KEY CONCEPTS ABOUT TRAVEL

CONTENTS
Overview of Travel Systems
How Travel Networks Work
How A* Navigation Works
A* Travel Thresholds

Deciding on a Travel Tool

Overview of Travel Systems

This topic will provide a high-level overview of different tools for controlling the travel
paths for task executers such as operators, transporters, and the TaskExecuter object.

By default, when a task executer travels between two objects, FlexSim will simply
choose the shortest distance between two points: a straight line. While this default
travel logic might meet your simulation needs, in many cases it won't---especially if
you're working with a specific floor plan. If task executers use the default travel
system, they might end up traveling through other objects or through barriers such as
walls. The following image shows an example of the default travel behavior:

‘Entrance1 Exitl H
W

| = » .
l !___B_eglstratlnm

Using one of FlexSim's travel tools instead of the default travel system will allow you
to create more accurate travel paths. You can define the specific travel paths that task
executers should use and/or you can create barriers that task executers will need to
travel around (such as walls). In other words, you'll be able to create more accurate
travel paths for your task executers. Travel accuracy has two main advantages:

« Accurate travel paths will give you better statistics - If task executers aren't
traveling on the shortest distance between two points, that means their travel
time might be longer. Even seemingly minor differences in travel time and
distance can have a large impact on the overall statistics of your simulation
model over time. Using accurate travel paths will ensure that those statistics
are more representative of the actual business system you are trying to
simulate.

e Accurate travel paths will look better visually - When task executers travel in a
straight path between two objects, it sometimes makes them travel in ways
that appear visually incorrect. For example, an operator might walk through an
object or through the walls of a floor plan to get to its destination. Using a
travel system to force task executers to walk around objects or barriers will help
the model look more correct visually.

FlexSim has two different tools to create different travel systems for task executers:

« Travel Networks - Using this tool, you'll define the specific paths that task
executers can use to get from one location to another in the simulation model.

« A* Navigation - Using this tool, you'll create travel barriers for task executers.
Any fixed resources you connect to the A* system will also be treated as a
barrier that cannot be passed through directly. The A* Navigator will then use
these barriers and the travel threshold around fixed resources to calculate the
shortest distance between two locations.

You Can Make Both Systems Invisible

While you're building travel systems, you'll usually want to have several different
visual guides turned on to ensure you build the travel system correctly. However,
after your system is built and validated, you can easily hide these travel systems
if needed.

The following sections will discuss the two different travel tools in more depth as well
as other important concepts related to travel systems.

How Travel Networks Work

As was stated above, when you use the travel network tool, you'll define the specific
paths that task executers can use to get from one location to another in the
simulation model. The following image shows the same model that was used in the
previous image, but now the task executers travel on specific paths:

WaitingAreal

| TriageChair1

To use this tool, you'll follow a few basic steps:

1. Add network nodes to the model - You'll start by dragging out network nodes

(from the Library) and placing them at key points in the simulation model. In

general, you'll want to put network nodes next to fixed resources to which task
executers will need to travel. Then, you'll want to put network nodes at the
beginning and end of a path you want them to travel (such as a hallway). The
following image shows an example of two unconnected network nodes at the
beginning and end of a hallway:

2. Connect network nodes to create travel paths - You can connect two nodes using
the same method that you would use to create input/output port connections
(A-connects) between fixed resources. Once the nodes are connected, you'll see
a line connecting the two nodes. The line will also have directional arrows
indicating which directions of travel are allowed on that path:

You Can Create Curved Paths

If needed, you can right-click a path and change it to a curved path. Doing so will
add spline points on the path. You can drag those splines to create curves as
needed.

3. Connect fixed resources to network nodes - If a task executer needs to travel to a
fixed resource, you'll need to make sure it's connected to the travel network.
Use an A-connect to connect a nearby network node to the fixed resource. A
blue line will appear to show that the fixed resource is now connected to that
node:

WaitingAreal

4. Connect task executers to network nodes - Use an A-connect to connect a nearby
network node to the task executer. This network node will act as the task

executer's entry point to the travel network, so you should connect the task
executer to a node that is near its starting reset position in the simulation

model. A red line will appear to show that the task executer is now connected to
that node:

] RN1

5. Add a traffic controller to prevent collisions - Many simulation models will not
need a traffic controller, but if you have a busy travel intersection where many
different task executers might possibly collide, you might want to add a traffic
controller object to manage the traffic. You'll connect network nodes to the
traffic controller to define which paths should have restricted access. The traffic
controller can then limit the number of travelers that are allowed to enter a
particular path or area at a time.

TrafficControl1

6. Change additional travel network properties - If needed, you can adjust properties
on the entire network or the connection between two network nodes. You can
determine whether connections will allow two-way or one-way traffic. You can
also determine whether task executers traveling at a faster speed can pass
slower task executers and, if not, how much space will be allowed between
them on the path.

7. Make the travel network invisible - Lastly, you can hide the travel network so that
you don't have to clutter up the simulation model with travel network paths.
Right-click and change the Network View Mode. If you select None, all of the
network nodes and paths will disappear except for one node (the one you right-
clicked). You can use the one remaining node to turn the visibility back on if
needed.

When you reset and run the simulation model, FlexSim will calculate the shortest path
for a task executer to take on the travel network any time a task executer needs to
travel from one point on the network to another.

How A* Navigation Works

As was stated above, you'll use the A* navigation system to create travel barriers for
task executers. Any fixed resources you connect to the A* system will also be treated
as a barrier that cannot be passed through directly. The A* Navigator will then use
these barriers and the travel threshold around fixed resources to calculate the
shortest distance between two locations. The following image shows the same model
that was used in the previous sections, but now the task executers travel by
calculating the shortest path around barriers:

$5

_ Entran :e1

g

" I R
| R =

v

4 WaitingAreal

To use this tool, you'll follow a few basic steps:

1. Add an A* Navigator to the model - From the Library, drag an A* Navigator into
the model. You can place the navigator anywhere in the model, but most users
prefer to put it in a spot that is slightly removed from the rest of the simulation

model.

A*

AStarNavigator

2. Connect all the fixed resources and task executers to the A* Navigator - You can
connect two nodes using the same method that you would use to create
input/output port connections (A-connects) between fixed resources. You can
also connect 3D objects in the A* Navigator's properties by sampling them as
members. When a 3D object has been successfully connected to the navigator,
it will have a purple background underneath it.

Registration

-

' TriageChair1

RN1

3. Add any dividers or barriers to the model as needed - Dividers and barriers act as
places that task executers have to walk around. In the Library, click the Divider
or Barrier buttons to enter Create Divider or Create Barrier mode. Then you can
click inside the model to draw the dividers or barriers. (It sometimes helps to
turn off the model's main grid and turn on the A* grid visuals instead.)

e

AStarNavigator

Entrancel

N
N
Vv

v

———

WaitingAreal

4. Check that the travel thresholds for fixed resources don't extend beyond the dividers
or barriers - An object's travel threshold is comprised of red points surrounded
by blue points. (See A* Travel Thresholds for a deeper explanation of how A*

uses travel thresholds.) You'll want to move an object so that the red points in
its travel threshold don't fall on the wrong side of A* dividers or barriers.
Otherwise, it could make a task executer travel along an incorrect path to get to
that entry point. The following image shows an example of a travel threshold
extending beyond a divider:

. >

J =

L - L 4
ExamIE ahle
$ L 2 $ L 4 L 4

5. Make the A* visual guides invisible - After you've successfully tested your A*
system, you can hide the visuals if needed. You can do this in the A*
Navigator's properties.

When the simulation model runs and a task executer needs to travel from one point in
the grid, A* will run a search algorithm to find the shortest path between points. The
algorithm basically divides the model into a grid of nodes through which task
executers might travel. Each node specifies the direction travel members can possibly
move. The algorithm will look at nodes in the direction of travel and determine which

direction is the fastest, including traveling diagonally between nodes. The grid of

nodes can be modified by creating barriers restricting where the travel members can
move.

The following image shows an example of a grid that has several barriers in place:

When a traveler needs to go from point A to point B, the A* algorithm would calculate
the shortest path. Notice in this scenario that there is more than one possible path,
but only the path that is marked is clearly shorter than the others. A* can adapt to
changing conditions and find the ideal path.

A* is an Open Source Algorithm

A* is an open source algorithm that was developed by a third party outside of
FlexSim. For that reason, there are more in-depth guides you can find about how
the A* algorithm works if you need one. Just do a simple internet search and you
should be able to find plenty of information.

A* Travel Thresholds

The A* Navigation system uses

point between two objects. A fixed resource's travel threshold represents the possible

travel thresholds to calculate the shortest possible

entry points to which a task executer may travel when it is walking to that object.

An object's travel threshold consists of two zones: a calculated path zone and a travel

arrival zone. The following image displays these two zones on an object:

i . v .
W ur b L -

‘ = " ,__'_:-::___—_F aw
[I = h"
= i rs
Exam :ahle

W W b

&

Notice that this image shows an object surrounded by red and blue points. These

points indicate the two zones th
described in the following table:

at make up the object's travel threshold. Each zone is

Zone

Description

& calculated path zone

When a task executer needs to travel to this fixed resource, the
A* Navigator will compute the shortest path between the

traveler and any of the points in the calculated path zone. The
traveler will then begin traveling following this shortest path.

PY travel arrival zone The travel arrival zone won't be used by the A* algorithm to
calculate a path, but the points in the travel arrival zone will be
used to determine when the travel has arrived at the fixed
resource. As soon as the traveler reaches any of the blue dots,
FlexSim will consider the traveler as having arrived and the
travel task as complete. In other words, the A* algorithm will
first build the shortest path to a red dot. Then, if the resulting
path includes blue dots, the algorithm will shorten the path to
stop at the first blue dot on the path. The difference between
the red and blue dots becomes more apparent when a fixed
resource is especially long, for example when the object's x
axis size is significantly larger than the object's y axis size.

Travel thresholds can sometimes be the source of problems while using A*, causing
strange travel behavior or animations. See Troubleshooting Travel Thresholds for

instructions on how to fix common travel threshold problems.

Deciding on a Travel Tool

When deciding whether to use travel networks or A* navigation, you'll need to
consider which system makes sense for your simulation project. For the most part, it's
largely going to be a matter of personal preference. However, each system has
different advantages and disadvantages, as explained in the following table:

Travel Networks A* Navigation

Advantages » Gives the user more control over « Fairly easy to set up and handles
task executer travel paths most of the logic on your behalf

Models might run faster because
travel networks don't need to
perform as many calculations

Can be used to restrict the
direction that travelers can travel
on a path (one-way vs. two-way,
etc.)

Can set speed limits on certain
travel paths

Can be used to create virtual
distances, which is where you
make the distance between nodes
longer or shorter than the actual
distance in model units

+ When you have a model with a

high number of possible
destinations and many possible
paths between those destinations,
A* would be easier to set up than
travel networks

Disadvantages

Takes a slightly longer time to set
up
Creating paths between every

possible destination can be
cumbersome

Sometimes troubleshooting takes
more time

If your model is large and complex,
the A* algorithm could slow down
your model while it computes the
ideal travel path

When the calculations take too
much time to process, it can
sometimes create strange visuals

Try experimenting with both methods at first and discover which system makes the

most sense for your simulation model project.

