
Salt system architecture

Overview
Most users find it helpful to understand what Salt is and how it works before they
begin the installation process. This page provides a high-level overview of the Salt
system architecture and its different components.

What is Salt?
SaltStack Enterprise is powered by Salt, a Python-based open-source remote
execution framework used for:

Configuration management

Automation

Provisioning

Orchestration

Salt is the technology that underlies the core functionality of SaltStack Enterprise.
SaltStack Enterprise enhances and extends Salt, providing additional functionality
and features that improve ease of use. For a summary of the SaltStack Enterprise
infrastructure, see SaltStack Enterprise system architecture [sse-system-
architecture.html#sse-system-architecture].

https://enterprise.saltstack.com/en/latest/docs/sse-system-architecture.html#sse-system-architecture

The Salt system architecture
The following diagram shows the primary components of the basic Salt architecture:

[../_images/salt-architecture.png]

The following sections describe some of the core components of the Salt
architecture that are relevant to SaltStack Enterprise installation.

SALT MASTERS AND SALT MINIONS

https://enterprise.saltstack.com/en/latest/_images/salt-architecture.png

Salt uses the master-client model in which a master issues commands to a client
and the client executes the command. In the Salt ecosystem, the Salt Master is a
server that is running the salt-master service. It issues commands to one or more
Salt Minions, which are servers that are running the salt-minion service and that are
registered with that particular Salt Master.

Another way to describe Salt is as a publisher-subscriber model. The master
publishes jobs that need to be executed and Salt Minions subscribe to those jobs.
When a specific job applies to that minion, it will execute the job.

When a minion finishes executing a job, it sends job return data back to the master.
Salt has two ports used by default for the minions to communicate with their
master(s). These ports work in concert to receive and deliver data to the Message
Bus. Salt’s message bus is ZeroMQ, which creates an asynchronous network
topology to provide the fastest communication possible.

TARGETS AND GRAINS

The master indicates which minions should execute the job by defining a target. A
target is the group of minions, across one or many masters, that a job’s Salt
command applies to.

The following is an example of one of the many kinds of commands that a master
might issue to a minion. This command indicates that all minions should install the
Vim application:

Note

A master can also be managed like a minion and can be a target if it is running
the salt-minion service.



salt -v '*' pkg.install vim

In this case the glob '*' is the target, which indicates that all minions should execute
this command. Many other targeting options are available, including targeting a
specific minion by its ID or targeting minions by their shared traits or characteristics
(called grains in Salt).

Salt comes with an interface to derive information about the underlying system. This
is called the grains interface, because it presents Salt with grains of information.
Grains are collected for the operating system, domain name, IP address, kernel, OS
type, memory, and many other system properties. You can also create your own
custom grain data.

Grain data is relatively static. However, grain data is refreshed when system
information changes (such as network settings) or when a new value is assigned to a
custom grain.

OPEN EVENT SYSTEM (EVENT BUS)

The event system is used for inter-process communication between the Salt Master
and Salt Minions. In the event system:

Events are seen by both the master and minions.

Events can be monitored and evaluated by both.

The event bus lays the groundwork for orchestration and real-time monitoring.

All minions see jobs and results by subscribing to events published on the event
system. Salt uses a pluggable event system with two layers:

ZeroMQ (0MQ) - The current default socket-level library providing a flexible
transport layer.

Tornado - Full TCP-based transport layer event system.

One of the greatest strengths of Salt is the speed of execution. The event system’s
communication bus is more efficient than running a higher-level web service (http).
The remote execution system is the component that all components are built upon,
allowing for decentralized remote execution to spread load across resources.

SALT STATES

In addition to remote execution, Salt provides another method for configuring
minions by declaring which state a minion should be in, otherwise referred to as Salt
states. Salt states make configuration management possible. You can use Salt
states to deploy and manage infrastructure with simple YAML files. Using states, you
can automate recursive and predictable tasks by queueing jobs for Salt to implement
without needing user input. You can also add more complex conditional logic to state
files with Jinja.

To illustrate the subtle differences between remote execution and configuration
management, take the command referenced in the previous section about Targets
and grains [#targets-and-grains] in which Salt installed the application Vim on all
minions:

Methodology Implementation Result

Remote execution
Run salt -v
'*'

pkg.install

vim from the
terminal

Remotely installs Vim on the targeted
minions

Configuration
management Write a YAML

state file that
checks
whether Vim is
installed

This state file
is then applied
to the targeted
minions

Ensures that Vim is always installed on
the targeted minions

Salt analyzes the state file and
determines what actions need to be
taken to ensure the minion complies with
the state declarations

If Vim is not installed, it automates the
processes to install Vim on the targeted
minions

The state file that verifies Vim is installed might look like the following example:

To apply this state to a minion, you would use the state.apply module, such as in
the following example:

This command applies the vim_install state to all minions.

Formulas are collections of states that work in harmony to configure a minion or
application. For example, one state might trigger another state.

THE TOP FILE

It is not practical to manually run each state individually targeting specific minions
each time. Some environments have hundreds of state files targeting thousands of
minions.

Salt offers two features to help with this scaling problem:

The top.sls file - Maps Salt states to their applicable minions.

Highstate execution - Runs all Salt states outlined in top.sls in a single
execution.

The top file maps which states should be applied to different minions in certain
environments. The following is an example of a simple top file:

File:/srv/salt/vim_install.sls

install_vim_now:

 pkg.installed:

 - pkgs:

 - vim

salt '*' state.apply vim_install

File: /srv/salt/top.sls

base:

 '*':

 - all_server_setup

In this example, base refers to the Salt environment, which is the default. You can
specify more than one environment as needed, such as prod, dev, QA, etc.

Groups of minions are specified under the environment, and states are listed for each
set of minions. This top file indicates that a state called all_server_setup should be
applied to all minions '*' and the state called web_server_setup should be applied
to the 01webserver minion.

To run the Salt command, you would use the state.highstate function:

This command applies the top file to the targeted minions.

SALT PILLAR

Salt’s pillar feature takes data defined on the Salt Master and distributes it to minions
as needed. Pillar is primarily used to store secrets or other highly sensitive data, such
as account credentials, cryptographic keys, or passwords. Pillar is also useful for
storing non-secret data that you don’t want to place directly in your state files, such
as configuration data.

Salt pillar brings data into the cluster from the opposite direction as grains. While
grains are data generated from the minion, the pillar is data generated from the
master.

Pillars are organized similarly to states in a Pillar state tree, where top.sls acts to
coordinate pillar data to environments and minions privy to the data. Information
transferred using pillar has a dictionary generated for the targeted minion and
encrypted with that minion’s key for secure data transfer. Pillar data is encrypted on a
per-minion basis, which makes it useful for storing sensitive data specific to a
particular minion.

 '01webserver':

 - web_server_setup

salt * state.highstate

BEACONS AND REACTORS

The beacon system is a monitoring tool that can listen for a variety of system
processes on Salt Minions. Beacons can trigger reactors which can then help
implement a change or troubleshoot an issue. For example, if a service’s response
times out, the reactor system can restart the service.

Beacons are used for a variety of purposes, including:

Automated reporting

Error log delivery

Microservice monitoring

User shell activity

Resource monitoring

When coupled with reactors, beacons can create automated pre-written responses
to infrastructure and application issues. Reactors expand Salt with automated
responses using pre-written remediation states.

Reactors can be applied in a variety of scenarios:

Infrastructure scaling

Notifying administrators

Restarting failed applications

Automatic rollback

When both beacons and reactors are used together , you can create unique states
customized to your specific needs.

SALT RUNNERS AND ORCHESTRATION

Salt runners are convenience applications executed with the salt-run command.
Salt runners work similarly to Salt execution modules. However, they execute on the

Salt Master instead of the Salt Minions. A Salt runner can be a simple client call or a
complex application.

Salt provides the ability to orchestrate system administrative tasks throughout the
enterprise. Orchestration makes it possible to coordinate the activities of multiple
machines from a central place. It has the added advantage of being able to control
the sequence of when certain configuration events occur. Orchestration states
execute on the master using the state runner module.

When you run a multi-node installation, you are actually running an orchestration to
install SaltStack Enterprise. In the multi-node installation scenario, you run an
orchestration highstate designed by SaltStack. The highstate runs on your Salt
Master and sets up the multi-node environment. It installs the core SaltStack
Enterprise architecture on the three other nodes that will host PostgreSQL, Redis, and
the Enterprise API (RaaS).

